7,165 research outputs found

    Plasmoid impacts on neutron stars and highest energy cosmic rays

    Full text link
    Particle acceleration by electrostatic polarization fields that arise in plasmas streaming across magnetic fields is discussed as a possible acceleration mechanism of highest-energy cosmic rays. Specifically, plasmoids arising in planetoid impacts onto neutron star magnetospheres are considered. We find that such impacts at plausible rates may account for the observed flux and energy spectrum of the highest energy cosmic rays.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Lett., uses REVTE

    The Sun at high spatial resolution: The physics of small spatial structures in a magnetized medium

    Get PDF
    An attempt is made to provide a perspective on the problem of spatial structuring on scales smaller than can presently be directly and regularly observed from the ground or with which current space-based instrumentation can be anticipated. There is abundant evidence from both observations and theory that such spatial structuring of the solar outer atmosphere is ubiquitous not only on the observed scales, but also on spatial scales down to (at least) the subarcsecond range. This is not to say that the results to be obtained from observations on these small scales can be anticipated: quite the opposite. What is clear instead is that many of the classic problems of coronal and chromospheric activity - involving the basic dissipative nature of magnetized plasmas - will be seen from a novel perspective at these scales, and that there are reasons for believing that dynamical processes of importance to activity on presently-resolved scales will themselves begin to be resolved on the sub-arcsecond level. Since the Sun is the only astrophysical laboratory for which there is any hope of studying these processes in any detail, this observatioinal opportunity is an exciting prospect for any student of magnetic activity in astrophysics

    Multiple transonic solutions and a new class of shock transitions in solar and stellar winds

    Get PDF
    The steady isothermal solar wind equations are shown to admit, under certain circumstances, mutliple transonic solutions when, for example, momentum deposition gives rise to multiplee critical points in the flow. These multiple solutions consist of a continuous solution and solutions which involve shock transitions between critical solutions. The ambiguity arising from the multiplicity of the solutions can be resolved by following the time evolution of a wind profile with one critical point. Results of the numerical integration of the time-dependent equations with momentum addition show that each of these multiple solutions is physically accessible and depends on the rate of change of momentum deposition. These results suggest that standing shocks are likely to be present in the inner solar wind flow

    Formation of standing shocks in stellar winds and related astrophysical flows

    Get PDF
    Stellar winds and other analogous astrophysical flows can be described, to lowest order, by the familiar one dimensional hydrodynamic equations which, being nonlinear, admit in some instances discontinuous as well as continuous transonic solutions for identical inner boundary conditions. The characteristics of the time dependent differential equations of motion are described to show how a perturbation changes profile in time and, under well defined conditions, develops into a stationary shock discontinuity. The formation of standing shocks in wind type astrophysical flows depends on the fulfillment of appropriate necessary conditions, which are determined by the conservation of mass, momentum and energy across the discontinuity, and certain sufficient conditions, which are determined by the flow's history

    The Effect of Ru substitution for Ni on the superconductivity in MgCNi3-xRux

    Full text link
    The superconductor MgCNi3 has been chemically doped by partial substitution of Ru for Ni in the solid solution MgCNi3-xRux for 0<x<0.5. Magnetic and specific heat measurements show that the Sommerfeld parameter (gamma_exp) and TC decrease immediately on Ru substitution, but that a TC above 2K is maintained even for a relatively large decrease in gamma_exp. Ferromagnetism is not observed to develop through Ru substitution, and the normal state magnetic susceptibility is suppressed.Comment: 18 pages, 13 figure

    On the miscible Rayleigh-Taylor instability: two and three dimensions

    Get PDF
    We investigate the miscible Rayleigh-Taylor (RT) instability in both 2 and 3 dimensions using direct numerical simulations, where the working fluid is assumed incompressible under the Boussinesq approximation. We first consider the case of randomly perturbed interfaces. With a variety of diagnostics, we develop a physical picture for the detailed temporal development of the mixed layer: We identify three distinct evolutionary phases in the development of the mixed layer, which can be related to detailed variations in the growth of the mixing zone. Our analysis provides an explanation for the observed differences between two and three-dimensional RT instability; the analysis also leads us to concentrate on the RT models which (1) work equally well for both laminar and turbulent flows, and (2) do not depend on turbulent scaling within the mixing layer between fluids. These candidate RT models are based on point sources within bubbles (or plumes) and interaction with each other (or the background flow). With this motivation, we examine the evolution of single plumes, and relate our numerical results (of single plumes) to a simple analytical model for plume evolution.Comment: 31 pages, 27 figures, to appear in November issue of JFM, 2001. For better figures: http://astro.uchicago.edu/~young/ps/jfmtry08.ps.

    Generation of flux tube waves in stellar convection zones. 1: Longitudinal tube waves

    Get PDF
    The source functions and the energy fluxes are derived for wave generation in magnetic flux tubes embedded in an otherwise magnetic- field free, turbulent, and compressible fluid. Specific results for the generation of longitudinal tube waves are presented

    Reflections on Augusta: Judicial, Legislative and Economic Approaches to Private Race and Gender Consciousness

    Get PDF
    In light of the recent controversy surrounding Augusta National Golf Club\u27s exclusionary membership policy, this Article highlights the myriad incentives and disincentives that Augusta and similar clubs have for reforming such policies. The author acknowledges the economic importance of club membership in many business communities and addresses the extent to which club members\u27 claims of rights of privacy and free association are valid. The Article also considers the potential of judicial action in promoting the adoption of more inclusive membership policy; the state action doctrine and the First Amendment right to freedom of association are discussed as frameworks under which litigants may potentially bring claims against clubs and the author assesses the likelihood of success under each. This Article next addresses the possibility of using existing legislation to prohibit or discourage exclusionary membership policies. Though he finds that the federal legislation on the books (Title II of the Civil Rights Act) falls short as a tool for combating discrimination, the author finds potential in some states\u27 civil rights acts. The author also outlines the probable arguments plaintiffs and defendants would make were a claim brought against an exclusionary club. Finally, this Article addresses the potential for new federal or state legislation to combat this type of discrimination, the efficacy of denying liquor licenses and property tax exemptions to exclusionary clubs, and the potential normative effect that could be realized were high-profile athletes, professional tours, concerned club members, and business communities to make their disapproval of exclusionary policies heard
    corecore